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D I S S I P A T I O N  OF D Y N A M I C - L O A D I N G  E N E R G Y  

IN Q U A S I - E L A S T I C  D E F O R M A T I O N  P R O C E S S E S  IN R O C K S  

A. V. Mikhalyuk and V. V. Zakharov UDC 624.131+539.215 

It is believed [1, 2] that at sufficiently low loading levels, rocks behave as elastic solids, which are capable 
of dissipating deformation energy only at pressures that lead to the occurrence of an irreversible deformation 
component due to transition to a plastic state or due to damage. It is shown below that in dynamic loading. 
irreversible energy absorption is also observed under loads that are significantly lower than the elastic limit. 
and this can be associated with both viscosity and changes in the internal structure of rocks. 

The general mechanism of variation in the energy capacity of dynamic deformation with variation 
in loading intensity and conditions is established on the basis of experiments with various intrusive rocks 
(granites, granodiorites, granite-gneiss, etc.). Qualitative data on the dissipation of dynamic-loading energy 
in the regions of quasi-elastic and elastoplastic deformation of intrusive rocks are compared. 

Rocks are complex deformable media. This complexity is due to the features of their physical state 
(polymineral composition, heterogeneity, multiphase and granular structure, porosity, structural strength. 
etc.), which affect the deformation process from the very beginning of loading and which are reflected on the 
shape of strain diagrams. Since the overwhelming majority of rocks undergo compression loads, the discussion 
below is concerned with this type of dynamic load. At the beginning of loading, partial closure of pore space 
(microdefects) [3] has an effect on the stress-strain relationship, causing nonlinearity of strain diagrams in 
the region of low pressures. Under sufficiently large loads, the strain of the mineral rock material exceeds 
considerably the strain of the pore space, and the behavior of the rock becomes nearly linear-elastic. As 
microdefects are accumulated or the plastic-strain component increases, a departure from this behavior is 
observed at stresses comparable with the ultimate or yield stresses. 

Figure 1 shows a(e) diagrams for uniaxial dynamic (a) and static (b) compression. The diagrams are 
plotted on the basis of experimental studies of rocks of various origins performed on a measuring complex 
[4]. Curve numbers 1-6 correspond to the ordinal numbers of rocks from some deposits of refractory and 
nonmetalliferous raw materials and also of the natural gas of Ukraine in Table 1, which gives brief data on 
their physicomechanical properties: density p, porosity n, longitudinal elastic wave velocities Vlong , Poisson's 
ratio v, and strength in uniaxial static compression strength a0- 

These diagrams reflect the results of experiment in which the occurrence of the irreversible component 
of the deformation process was ruled out, i.e., the state of the rock was within the elastic region. However. 
although the behavior of all type of rock is generally elastic (the unloading curve returns to the coordinate 
origin), the loading trajectory does not coincide with the unloading trajectory, and 

~rnax 0 

(1) 
0 ~max 

which indicates pulsed-energy absorption. Here a and ~ are the stress and the corresponding relative strain 
of the rock and Sm~x is the maximum relative strain of the rock attained in the experiment. 

The fact that the above feature of the behavior of rocks is typical only of dynamic processes is supported 
by a comparison of curves 1 and 2 in Fig. la with curves 1, 2, and 6 in Fig. lb (filled points refer to loading 
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TABLE 1 

No. Rock Deposit 

Pink quartzite 

Gray-green granite 

Gray-green limestone 

Alevrolite 

Clay sandstone 

Gray granite-gneiss 

Ovruchskoye 

Malinskoye 

Kamenets- Podol'skoye 

Zapadno- Krestischenskoye 

Zapadno-Krestischenskoye 

Ukrainian Shield 

Pl  

kg/m 3 

2650 

2600 

2580 

2580 

2360 

2610 

n, Vlong, 

% km/sec 

0.4 5.89 

1.1] 3.42 

1.1 4.65 

5.4 3.26 

ll.I 2.53 

0.~ 4.29 

// 

0.10 

0.22 

0.28 

0.19 

0.17 

0.21 

no.10 -s, 

Pa 

1980 

1570 

855 

520 

1724 

and open points to unloading). The curves were obtained on the same test complex for the same rocks (see 
Table 1) at a rate of increase in pressure of 3 �9 104 Pa/sec. Note that, in static tests, a barely noticeable 
divergence of the loading and unloading branches of curves 2 and 6 was observed as the stress decreased 
below 4-4.5 MPa, which corresponds to 5.7-7.8% of the loading amplitude. 

The shape of the dynamic-strain diagrams of rocks is not influenced by the errors of operation of 
the measuring complex, whose accuracy was checked by tests on dynamic compression of various model 
materials: metals (D-16T duralumin and cast lead) and spindle oil. These materials were chosen because they 
are homogeneous and do not have a distinct granular structure, and because their loading characteristics are 
independent of the time of loading. 

Some results of the test experiments are given in [4]. Figure la shows dynamic #(~) diagrams for D-16T 
duralumin and spindle oil (curves 7 and 8) obtained in the test experiments (dynamic loading of the oil was 
performed by the scheme #1 = #2 = #3 = P and el > e2 = ~3 = 0; the filled points in curves 7 and 8 refer 
to loading and the open points refer to unloading). Analysis of curves 7 and 8 shows that,  first, the dynamic 
values of the Young modulus for duralumin and the compressibility of the oil agree satisfactorily with the rated 
(static) values of these model materials, i.e., the effect of loading conditions on the deformation properties of 
the materials is insignificant in the chosen experimental procedure, and, second, their #(~) diagrams do not 
have the shape of a loop typical of rocks. 

From Fig. 1 and relation (1) one can conclude that, under dynamic loading, rocks are active dissipating 
media even in the elastic region. Therefore, deformation processes in rocks under loads that do not exceed 
the elastic limit will be called quasi-elastic. 

Note that for rocks, as for other solids, the notion of the elastic limit is rather conditional, since 
the possibility of determining irreversible strain completely depends on the resolution of the measuring 
instrument. As early as 1911, T. Ks163 [5] showed that for rocks it is impossible to define the elastic 
limit as the maximum stress at and below which the total strain is completely reversible. However, because of 
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the necessity of specifying the limits of application of the laws of elasticity for engineering design, the notion of 
the conditional yield point, at which significant residual deformation occurs, was introduced. In modern design 
for structural materials, 0.2% strain is regarded as such a critical strain (Hodgkinson criterion), although other 
criteria are also known (for example, the Wertheim criterion, 0.05%). It is important that the uncertainty in 
the notion of significant residual strain is responsible for the uncertainty in the notion (and, hence, in the 
qualitative definition) of the elastic limit, Therefore, in planning and performing the experiments described 
below and in processing their results, we defined the region of quasi-elastic behavior of rocks from the following 
considerations. 

It is known that the occurrence of irreversible deformation in solids is associated with the existence 
of structural crystal imperfection, owing to which the actual strength of the body and the boundary of 
irreversibility of a deformation process is significantly (by more than two orders of magnitude) smaller than 
the theoretical maximum of elastic strain [6]. The deformation of bodies is predominantly of an elastic character 
as long as structural imperfections of the rock (crystal) such as Schottky and Frenkel defects, dislocations, 
etc., which are inherent in the medium in the natural state, are in a state of relative equilibrium. 

The dislocation motion occurring under loading is irreversible and is responsible for the occurrence of 
an irreversible strain component. Hence, it can be concluded that the elastic limit in terms of loading is the 
pressure at which the motion of structural imperfections of crystals begin, and the elastic limit in terms of 
strain is the corresponding strain of the body. Because of the great number and diversity of natural defects 
in rocks, direct quantitative calculations of the elastic limit are impossible in practice. 

The start of dislocations is usually determined by the Peierls-Nabarro relation [6] 

2c ( 
r = exp -- . (2) 

q qb / 

Here r is the tangential stress, G is the shear modulus, q is a coefficient that depends on the type of dislocation. 
and a and b are the crystal-lattice parameters. 

From (2) it follows that  dislocation motion is rapid with periodic weakening and restoration of bonds 
in the crystal lattice. Therefore, the stress r is considerably smaller than the theoretical stress in an ideal 
lattice, which is rtheor = G/2r ,  according to Ya. I. Frenkel. For solids with a nearly linear relation a(s), such 
as the majority of dense hard intrusive rocks (the subjects of this investigation), we can write 

Ttheor /T  -~ gtheor /ee l ,  (3) 

where etheor is the maximum theoretical elastic strain and eel is the elastic strain that  corresponds to the 
actual elastic limit. From (2) and (3) we have 

4a'ethe~ exp \---~--} (4) 
gel --  q 

Calculations by (4) show that the elastic limit in terms of strain eel depends on the system of rock- 
forming materials and changes within (4-16)- 10-2% for cubic system, (2.88-10.7) �9 10-3% for triclinic, 
(5.06-18.9). 10-3% for monoclinic, (2.93-10.9)-10-3% for tetragonal, (2.12-7.89) �9 10-3% for rhombic, and 
(2.07-7.71) �9 10-7% for trigonal systems. Evidently, the critical value gel for rocks coincide most closely with 
the Wertheim criterion proposed as early as 1844, and it is an order of magnitude smaller than the Hodgkinson 
criterion, which is generally adopted for structural materials. With allowance for the fact that the irreversible 
deformation of a rock as a polymineral formation occurs together with irreversible deformation of the weakest 
rock-forming mineral, the above approach to finding gel was used to determine the elastic limit of some 
intrusive rocks. 

The calculation results are given in Table 2, where b is the loading rate, E is the Young's modulus 
of a rock at the corresponding loading rate, and O'el is the elastic limit. Since the stress-strain relation for 
rocks depends on loading conditions (velocity), the elastic limit also shows a similar dependence [4]. For the 
intrusive rocks of the Ukrainian shield, this dependence is shown in Fig. 2 [29 experiments with 11 varieties 
of rocks were performed (see Table 2)], where the points correspond to the average values for each variety. 

Figure 3 shows the specific energy of the deformation process per unit of the applied load versus the 
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TABLE 2 

Rock Deposit &, GPa/sec E, GPa O'elast , MPa 

278.8 132 348 
Gray-green granite Malinskoye 536.7 111 492 

350.0 124 460 

215.0 61 292 
Porphyrous granite Korninskoye 

198.6 106 308 

234.0 126 268 
Granodiorite Korostyshevskoye 425.0 139 480 

444.0 89 432 

Pink granite Emelyanovskoye 
355.0 
421.0 
234.0 

140 
120 
121 

448 
382 
310 
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loading amplitude. Note the presence of two distinct branches with different rates of increase in the energy 
capacity of rock deformation with an increase in the amplitude of dynamic loading. A comparison of stresses 
in the region of inflection with the data for ~re! in Table 2 shows that the left portion of the curve corresponds 
to the quasi-elastic state of the rock, and the right portion to the elastoplastic state. In Fig. 3, one can also 
distinguish the region of transition from the elastic O'el to the plastic limit O'pl at loading amplitudes of 3.5- l0 s 
to 4.6 �9 l0 s Pa. The lower boundary of this range coincides with the calculated elastic limit given above. 

According to Fig. 3, the relation between the energy capacity of the deformation process and loading 
intensity is parabolic for intrusive rocks: 

A = 1.09.10-Z4a 2, J /m  3. (5) 

Note that the general form of relation (5) indicates the linear behavior of intrusive rocks in the quasi-elastic 
region and confirms the possibility of using relation (3) for quantitative estimation. 

Several mechanisms for the energy dissipation of dynamic loading (which does not give rise to residual 
strains) can be proposed which explain satisfactorily the shape of the strain diagrams for rocks in Fig. la. 
Lyakhov and Plyakova [7, 8] showed that, in terms of continuum mechanics, the noncoincidence of the loading 
and unloading branches at loads that do not exceed the elastic limit of the rock is apparently a consequence 
of the thermal dissipation of pulsed-loading energy due to the viscous properties of the deformed medium; the 
qualitative and quantitative differences between these branches are determined by the temporal configuration 
of the pressure pulse a(t), the dynamic-viscosity coefficient, and the static and dynamic elastic modulus of 
the medium. 

The concept of a rock as an etastoviscous body in the quasi-elastic loading region explains satisfactorily 
a number of experimentally observed facts. First, as can be seen in Fig. la, under dynamic loading, the 
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amplitude values of strains lag behind those of stresses in phase [in the ~(~) diagrams, which shows up as a 
certain increase in the strains with a decrease in the acting stresses]. Second, Lyakhov [8] showed theoretically 
that, under loading by a bell-shaped pulse, viscous media should have qualitatively similar curves of a(r and 
this is supported by oscillograms of dynamic processes: the ratio of the time of increase to the time of decrease 
in the pulse pressure was 0.46-0.58 with an average value of 0.508. Third, proceeding from the model of a 
linear elastoviscous medium of [7] and taking into account the dependence of the dynamic-viscosity coefficient 
on the loading time [4], one can easily show that, under static loads (t ---+ oo), such a medium undergoes linear 
elastic deformation, which is confirmed by the diagrams in Fig. lb. 

At the same time, in viscous media, deformation processes should proceed for some time after complete 
unloading of the medium from stresses. This was observed experimentally in compressible grounds [9, 10]. 
However, oscillograms of the experiments described above show that the duration of the signals a(t) and 
r in hard rocks practically coincide [at least with accuracy to the following values of stresses, strains, and 
time, respectively: (2.0-2.9). 105 Pa, (0.4-1.0). 10 -5, and (0.6-0.8). 10 -4 msec]. In addition, proceeding only 
from the viscous mechanism of energy dissipation, one cannot explain the changes in the physical state of 
rocks caused by elastic dynamic loading, in particular, the decrease in the propagation velocity of longitudinal 
elastic waves [11] and the increase in filtration permeability [12] and mass-exchange properties [13]. These 
effects can be explained satisfactorily in terms of the mechanics of granular media, by visualizing a rock as a 
structurally nonuniform, deformable body. 

We consider the deformation of a porous rock (Fig. 4) composed of mineral grains of various sizes which 
are in contact interaction with each other. We distinguish a characteristic element consisting of similar mineral 
formations I and II with identical mechanical properties. In this element, the distance between contact points 
1 and 2 can be regarded as a characteristic pore size (microcrack). In static loading, the deformation process 
develops by intercrystalline (intergranular) displacement [14] with a relatively uniform load distribution over 
the mineral material of the rock. Since the loading level does not exceed the elastic limit, in unloading, 
deformation proceeds by the same mechanism, restoring the initial volume of the body. 

In short-term dynamic loading, the displacement of the grains over the slippage surface has no time 
to develop, and the total load is taken by the contacts between the mineral grains. This feature of behavior 
of a granular medium is supported by the predominant damage of crystals at sufficiently high loading levels 
[14]. The qualitative aspect of the consequences of this interaction under loads that do not cause residual 
deformations of the medium can be analyzed on the basis of the following considerations. 

Suppose that a characteristic element of a granular medium (Fig. 4) is subjected to dynamic loading. 
Taking into account that the grain size is, as a rule, much smaller than the length of waves excited in a 
rock specimen in laboratory tests [4] or in commercial types of dynamic loading (explosions, impacts, electric 
discharges, etc.), we shall assume that the interaction among individual mineral particles is of a quasi-static 
character. Hence, the contact stresses among the grains can be estimated using the Hertz problem [15]. 
Without disturbing the qualitative picture of the analysis, we assume that the curvature radii of the surfaces 
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in contact at contact points are related by 

R~ -- R~ I : R1 < R I -~- R~ I -~- R2, R2 : o~R1. 

Here the subscripts 1 and 2 refer to contact points 1 and 2, and the superscripts I and II to mineral formations I 
and II. In this schematic representation of the grain interaction, the relation between the maximum pressures 
at contact points 1 and 2 is a 2/3. Thus, if the curvature radius of grains at point 2 is greater by a factor 
of two than that at point 1, the contact pressure at the latter point is higher by a factor of 1.6 than that 
at point 2, etc. Let the loading rate a (Fig. 4) be such that, at a certain fixed loading level, the contact 
pressure between fairly coarse grains in contact does not exceed the elastic limit of the mineral material but 
approaches it. Then, from the foregoing and taking into account the different grain sizes of rocks, one can 
state that there are always contacts among grains (crystals) at which the contact stresses reach not only the 
elastic limit but also the strength limit. Owing to this, there is local damage of the mineral material to which 
the corresponding amount of dynamic-loading energy goes. 

Upon unloading, the distance between the grains reaches the initial value, under the effect of elastic 
unloading, at points with a minor curvature, at which the pressures did not exceed O'elas t. The deformation of 
the rock generally remains elastic. At points with a large curvature of the contact surface, the contact of the 
mineral material disappears, since the damaged and overcompacted [14] material partially fills the natural 
pore channels (Fig. 4), and a new pore channel appears which causes a change in some properties of the rock 
(for example, filtration permeability). Clearly, mineral grains with a large curvature of the contact surface are 
first to undergo local damage. 

This mechanism of dynamic-loading energy dissipation agrees satisfactorily with microstructural and 
microtextural changes in rocks [14, 15], and explains some changes in the physical properties of rocks that 
are tested and used in technologies of intensification of borehole geotechnological processes [11-13, 16]. 
However, this mechanism cannot explain the above-mentioned features of dynamic-strain diagrams of rocks 
(in particular, the increase in strains behind the front of maximum stresses). Obviously, in real situations, both 
energy-dissipation mechanisms considered take place and supplement each other. Thus, it can be concluded 
that the features of the mechanical behavior of a rock as a deformable body under dynamic loading can 
be explained only in terms of continuum mechanics. To explain this behavior, and, moreover, to give it a 
theoretical basis, it is necessary to develop a unified approach in terms of the mechanics of continuous and 
discrete (granular, block, etc.) media. 

In the elastoplastic loading region, the energy of the deformation process also varies as a parabolic law 
with an increase in the loading rate. The second branch of the curve in Fig. 3 is satisfactorily approximated 
by the relation 

A = 3.94- 10-14cr 2 - 1.198.10-sa, J /m 3. (6) 

A comparison of (5) and (6) shows that in the elastoplastic region, i.e., with the occurrence of irreversible 
strains, the rate of increase in the specific energy of the deformation process is greater by a factor of 
approximately 3.6 than that in the quasi-elastic region. 
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